“Yeah It’s on. ”
前言
正文
- glsl内置函数inverse
- 自定义逆矩阵计算公式:
mat3 inverse_mat3(mat3 m) { float Determinant = m[0][0] * (m[1][1] * m[2][2] - m[2][1] * m[1][2]) - m[1][0] * (m[0][1] * m[2][2] - m[2][1] * m[0][2]) + m[2][0] * (m[0][1] * m[1][2] - m[1][1] * m[0][2]); mat3 Inverse; Inverse[0][0] = + (m[1][1] * m[2][2] - m[2][1] * m[1][2]); Inverse[1][0] = - (m[1][0] * m[2][2] - m[2][0] * m[1][2]); Inverse[2][0] = + (m[1][0] * m[2][1] - m[2][0] * m[1][1]); Inverse[0][1] = - (m[0][1] * m[2][2] - m[2][1] * m[0][2]); Inverse[1][1] = + (m[0][0] * m[2][2] - m[2][0] * m[0][2]); Inverse[2][1] = - (m[0][0] * m[2][1] - m[2][0] * m[0][1]); Inverse[0][2] = + (m[0][1] * m[1][2] - m[1][1] * m[0][2]); Inverse[1][2] = - (m[0][0] * m[1][2] - m[1][0] * m[0][2]); Inverse[2][2] = + (m[0][0] * m[1][1] - m[1][0] * m[0][1]); Inverse /= Determinant; return Inverse; }
mat4 inverse_mat4(mat4 m) { float Coef00 = m[2][2] * m[3][3] - m[3][2] * m[2][3]; float Coef02 = m[1][2] * m[3][3] - m[3][2] * m[1][3]; float Coef03 = m[1][2] * m[2][3] - m[2][2] * m[1][3]; float Coef04 = m[2][1] * m[3][3] - m[3][1] * m[2][3]; float Coef06 = m[1][1] * m[3][3] - m[3][1] * m[1][3]; float Coef07 = m[1][1] * m[2][3] - m[2][1] * m[1][3]; float Coef08 = m[2][1] * m[3][2] - m[3][1] * m[2][2]; float Coef10 = m[1][1] * m[3][2] - m[3][1] * m[1][2]; float Coef11 = m[1][1] * m[2][2] - m[2][1] * m[1][2]; float Coef12 = m[2][0] * m[3][3] - m[3][0] * m[2][3]; float Coef14 = m[1][0] * m[3][3] - m[3][0] * m[1][3]; float Coef15 = m[1][0] * m[2][3] - m[2][0] * m[1][3]; float Coef16 = m[2][0] * m[3][2] - m[3][0] * m[2][2]; float Coef18 = m[1][0] * m[3][2] - m[3][0] * m[1][2]; float Coef19 = m[1][0] * m[2][2] - m[2][0] * m[1][2]; float Coef20 = m[2][0] * m[3][1] - m[3][0] * m[2][1]; float Coef22 = m[1][0] * m[3][1] - m[3][0] * m[1][1]; float Coef23 = m[1][0] * m[2][1] - m[2][0] * m[1][1]; const vec4 SignA = vec4( 1.0, -1.0, 1.0, -1.0); const vec4 SignB = vec4(-1.0, 1.0, -1.0, 1.0); vec4 Fac0 = vec4(Coef00, Coef00, Coef02, Coef03); vec4 Fac1 = vec4(Coef04, Coef04, Coef06, Coef07); vec4 Fac2 = vec4(Coef08, Coef08, Coef10, Coef11); vec4 Fac3 = vec4(Coef12, Coef12, Coef14, Coef15); vec4 Fac4 = vec4(Coef16, Coef16, Coef18, Coef19); vec4 Fac5 = vec4(Coef20, Coef20, Coef22, Coef23); vec4 Vec0 = vec4(m[1][0], m[0][0], m[0][0], m[0][0]); vec4 Vec1 = vec4(m[1][1], m[0][1], m[0][1], m[0][1]); vec4 Vec2 = vec4(m[1][2], m[0][2], m[0][2], m[0][2]); vec4 Vec3 = vec4(m[1][3], m[0][3], m[0][3], m[0][3]); vec4 Inv0 = SignA * (Vec1 * Fac0 - Vec2 * Fac1 + Vec3 * Fac2); vec4 Inv1 = SignB * (Vec0 * Fac0 - Vec2 * Fac3 + Vec3 * Fac4); vec4 Inv2 = SignA * (Vec0 * Fac1 - Vec1 * Fac3 + Vec3 * Fac5); vec4 Inv3 = SignB * (Vec0 * Fac2 - Vec1 * Fac4 + Vec2 * Fac5); mat4 Inverse = mat4(Inv0, Inv1, Inv2, Inv3); vec4 Row0 = vec4(Inverse[0][0], Inverse[1][0], Inverse[2][0], Inverse[3][0]); float Determinant = dot(m[0], Row0); Inverse /= Determinant; return Inverse; }
后记
Tricks:
逆矩阵的计算很耗性能,因此可用以下小技巧//3x3正交矩阵 转置矩阵即是逆矩阵 矩阵右乘同转置矩阵左乘 vec3 lightObjectDir = normalize((vec4(lightWorldDir,0) * model_matrix).xyz);